Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.700
Filtrar
1.
Front Immunol ; 15: 1359169, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550579

RESUMO

T cell receptor (TCR) repertoire sequencing has emerged as a powerful tool for understanding the diversity and functionality of T cells within the host immune system. Yet, the chicken TCR repertoire remains poorly understood due to incomplete genome annotation of the TCR loci, despite the importance of chickens in agriculture and as an immunological model. Here, we addressed this critical issue by employing 5' rapid amplification of complementary DNA ends (5'RACE) TCR repertoire sequencing with molecular barcoding of complementary DNA (cDNA) molecules. Simultaneously, we enhanced the genome annotation of TCR Variable (V), Diversity (D, only present in ß and δ loci) and Joining (J) genes in the chicken genome. To enhance the efficiency of TCR annotations, we developed VJ-gene-finder, an algorithm designed to extract VJ gene candidates from deoxyribonucleic acid (DNA) sequences. Using this tool, we achieved a comprehensive annotation of all known chicken TCR loci, including the α/δ locus on chromosome 27. Evolutionary analysis revealed that each locus evolved separately by duplication of long homology units. To define the baseline TCR diversity in healthy chickens and to demonstrate the feasibility of the approach, we characterized the splenic α/ß/γ/δ TCR repertoire. Analysis of the repertoires revealed preferential usage of specific V and J combinations in all chains, while the overall features were characteristic of unbiased repertoires. We observed moderate levels of shared complementarity-determining region 3 (CDR3) clonotypes among individual birds within the α and γ chain repertoires, including the most frequently occurring clonotypes. However, the ß and δ repertoires were predominantly unique to each bird. Taken together, our TCR repertoire analysis allowed us to decipher the composition, diversity, and functionality of T cells in chickens. This work not only represents a significant step towards understanding avian T cell biology, but will also shed light on host-pathogen interactions, vaccine development, and the evolutionary history of avian immunology.


Assuntos
Galinhas , Linfócitos T , Animais , Galinhas/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , DNA Complementar , Genoma
2.
Fish Shellfish Immunol ; 148: 109475, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447781

RESUMO

The T-cell receptor (TCR) is a specific molecule on the surface of all T cells that mediates cellular adaptive immune responses to antigens. Hucho bleekeri is a critically endangered species and is regarded as a glacial relict that has the lowest-latitude distribution compared with any Eurasian salmonid. In the present study, two TCR genes, namely, TCR α and ß, were identified and characterized in H. bleekeri. Both TCR α and TCR ß have typical TCR structures, including the IgV domain, IgC domain, connecting peptide, transmembrane and cytoplasmic domains. The two TCR genes were constitutionally expressed in various tissues, with the highest expression found in the spleen for TCR α and in the trunk kidney for TCR ß. Challenge of H. bleekeri with LPS or poly(I:C) resulted in significant upregulation of both TCR α and ß expression in headkidney and spleen primary cells, indicating their potential roles in the immune response. Molecular polymorphism analysis of the whole ORF regions of TCR α and ß in different individuals revealed high diversity of IgV domains of these two genes, especially in complementarity-determining region (CDR) 3. The ratio of nonsynonymous substitution occurred at a significantly higher frequency than synonymous substitution in the CDR of TCR α and ß, demonstrating the existence of positive selection. The results obtained in the present study enhance our understanding of TCR roles in regulating immune mechanisms and provide new information for the study of TCR lineage diversity in fish.


Assuntos
Receptores de Antígenos de Linfócitos T alfa-beta , Salmonidae , Animais , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Polimorfismo Genético , Linfócitos T , Receptores de Antígenos de Linfócitos T/genética , Salmonidae/genética
3.
Fish Shellfish Immunol ; 146: 109421, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325591

RESUMO

In jawed vertebrates, the T cell receptor alpha (TRA) and delta (TRD) genes, which encode the TRα and TRδ chains, respectively, are located as a nested structure on a single chromosome. To date, no animal has been reported to harbor multiple TRA/TRD loci on different chromosomes. Therefore, herein, we describe the first full annotation of the TRA/TRD genomic regions of common carp, an allo-tetraploid fish species that experiences cyprinid-specific whole-genome duplication (WGD) in evolution. Fine genomic maps of TRA/TRD genomic regions 1 and 2, on LG30 and LG22, respectively, were constructed using the annotations of complete sets of TRA and TRD genes, including TRA/TRD variable (V), TRA junction (J), and constant (C), TRD diversity (D), and the J and C genes. The structure and synteny of the TRA/TRD genomic regions were highly conserved in zebrafish, indicating that these regions are on individual chromosomes. Furthermore, analysis of the variable regions of the TRA and TRD genes in a monoclonal T cell line revealed that both subgenomic regions 1 and 2 were indeed rearranged. Although carp TRAV and TRDV genes were phylogenetically divided into different lineages, they were mixed and organized into the TRA/TRD V gene clusters on the genome, similar to that in other vertebrates. Notably, 285 potential TRA/TRD V genes were detected in the TRA/TRD genomic regions, which is the most abundant number of genes in vertebrates and approximately two-fold that in zebrafish. The recombination signal sequences (RSSs) at the end of each V gene differed between TRAV and TRDV, suggesting that RSS variations might separate each V gene into a TRα or TRδ chain. This study is the first to describe subgenomic TRA/TRD loci in animals. Our findings provide fundamental insights to elucidate the impact of WGD on the evolution of immune repertoire.


Assuntos
Carpas , Peixe-Zebra , Animais , Peixe-Zebra/genética , Genes Codificadores da Cadeia delta de Receptores de Linfócitos T , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T gama-delta/genética , Carpas/genética
4.
Science ; 383(6686): eadh4059, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38422122

RESUMO

We describe humans with rare biallelic loss-of-function PTCRA variants impairing pre-α T cell receptor (pre-TCRα) expression. Low circulating naive αß T cell counts at birth persisted over time, with normal memory αß and high γδ T cell counts. Their TCRα repertoire was biased, which suggests that noncanonical thymic differentiation pathways can rescue αß T cell development. Only a minority of these individuals were sick, with infection, lymphoproliferation, and/or autoimmunity. We also report that 1 in 4000 individuals from the Middle East and South Asia are homozygous for a common hypomorphic PTCRA variant. They had normal circulating naive αß T cell counts but high γδ T cell counts. Although residual pre-TCRα expression drove the differentiation of more αß T cells, autoimmune conditions were more frequent in these patients compared with the general population.


Assuntos
Autoimunidade , Linfócitos Intraepiteliais , Glicoproteínas de Membrana , Receptores de Antígenos de Linfócitos T alfa-beta , Humanos , Autoimunidade/genética , Diferenciação Celular , Homozigoto , Linfócitos Intraepiteliais/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Glicoproteínas de Membrana/genética , Mutação com Perda de Função , Contagem de Linfócitos , Alelos , Infecções/imunologia , Transtornos Linfoproliferativos/imunologia , Linhagem , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais
6.
Biosci Rep ; 44(3)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38323526

RESUMO

T cell is vital in the adaptive immune system, which relays on T-cell receptor (TCR) to recognize and defend against infection and tumors. T cells are mainly divided into well-known CD4+ and CD8+ T cells, which can recognize short peptide antigens presented by major histocompatibility complex (MHC) class II and MHC class I respectively in humoral and cell-mediated immunity. Due to the Human Leukocyte Antigen (HLA) diversity and restriction with peptides complexation, TCRs are quite diverse and complicated. To better elucidate the TCR in humans, the present study shows the difference between the TCR repertoire in CD4+ and CD8+ T cells from 30 healthy donors. The result showed count, clonality, diversity, frequency, and VDJ usage in CD4+ and CD8+ TCR-ß repertoire is different, but CDR3 length is not. The Common Clone Cluster result showed that CD4+ and CD8+ TCR repertoires are connected separately between the bodies, which is odd considering the HLA diversity. More knowledge about TCR makes more opportunities for immunotherapy. The TCR repertoire is still a myth for discovery.


Assuntos
Linfócitos T CD8-Positivos , Receptores de Antígenos de Linfócitos T alfa-beta , Humanos , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T/genética , Antígenos HLA , Linfócitos T CD4-Positivos
7.
Sci Immunol ; 9(92): eadk4348, 2024 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-38335269

RESUMO

TCRαß+CD8αα+ intraepithelial lymphocytes (CD8αα+ αß IELs) are a specialized subset of T cells in the gut epithelium that develop from thymic agonist selected IEL precursors (IELps). The molecular mechanisms underlying the selection and differentiation of this T cell type in the thymus are largely unknown. Here, we found that Bcl6 deficiency in αß T cells resulted in the near absence of CD8αα+ αß IELs. BCL6 was expressed by approximately 50% of CD8αα+ αß IELs and by the majority of thymic PD1+ IELps after agonist selection. Bcl6 deficiency blocked early IELp generation in the thymus, and its expression in IELps was induced by thymic TCR signaling in an ERK-dependent manner. As a result of Bcl6 deficiency, the precursors of IELps among CD4+CD8+ double-positive thymocytes exhibited increased apoptosis during agonist selection and impaired IELp differentiation and maturation. Together, our results elucidate BCL6 as a crucial transcription factor during the thymic development of CD8αα+ αß IELs.


Assuntos
Linfócitos Intraepiteliais , Proteínas Proto-Oncogênicas c-bcl-6 , Receptores de Antígenos de Linfócitos T alfa-beta , Animais , Camundongos , Antígenos CD8/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Mucosa Intestinal , Linfócitos Intraepiteliais/metabolismo , Camundongos Knockout , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo
8.
BMC Immunol ; 25(1): 10, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297222

RESUMO

PURPOSE: More than 90% of patients with diabetes worldwide are type 2 diabetes (T2D), which is caused by insulin resistance or impaired producing insulin by pancreatic ß cells. T2D and its complications, mainly large cardiovascular (LCV) and kidney (Ne) complications, are the major cause of death in diabetes patients. Recently, the dysregulation of peripheral T cell immune homeostasis was found in most T2D patients. However, the characteristics of T-cell receptors (TCR) remain largely unexplored in T2D patients. PATIENTS AND METHODS: Here we investigated the TCR repertoire using high-throughput sequencing in peripheral blood collected from T2D patient with (8 LCV and 7 Ne) or without complications. RESULTS: Our analysis of TCR repertoires in peripheral blood samples showed that TCR profiles in T2D patients with complications tended to be single and specific compared to controls, according to the characteristics of TCR repertoire in V-J combination number, diversity, principal component analysis (PCA) and differential genes. And we identified some differentially expressed V-J gene segments and amino acid clonotypes, which had the potential to contribute to distinguishing T2D patient with or without complications. As the progression of the disease, we found that the profiling of TCR repertoire was also differential between T2D patients with LVD and Ne complications base on this pilot analysis. CONCLUSION: This study demonstrated the protentional unique property of TCR repertoire in peripheral blood of T2D patient with and without complications, or T2D patients with LVD and Ne complications, which provided the possibility for future improvements in immune-related diagnosis and therapy for T2D complications.


Assuntos
Diabetes Mellitus Tipo 2 , Linfócitos T , Humanos , Receptores de Antígenos de Linfócitos T/genética , Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Receptores de Antígenos de Linfócitos T alfa-beta/genética
9.
J Exp Med ; 221(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38284995

RESUMO

In this issue of JEM, Allyn et al. (https://doi.org/10.1084/jem.20230985) provide mechanistic insights into the nuclear organization of the Tcrb locus that permits long-range genomic rearrangements.


Assuntos
Rearranjo Gênico da Cadeia alfa dos Receptores de Antígenos dos Linfócitos T , Receptores de Antígenos de Linfócitos T alfa-beta , Receptores de Antígenos de Linfócitos T alfa-beta/genética
10.
Vet Immunol Immunopathol ; 268: 110702, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183837

RESUMO

Profiling the T cell receptor (TCR) repertoire using next-generation sequencing has become common in both human and translational research. Companion dogs with spontaneous tumors, including canine melanoma, share several features, e.g., natural occurrence, shared environmental exposures, natural outbred population, and immunocompetence. T cells play an important role in the adaptive immune system by recognizing specific antigens via a surface TCR. As such, understanding the canine T cell response to vaccines, cancer, immunotherapies, and infectious diseases is critically important for both dog and human health. Off-the-shelf commercial reagents, kits and services are readily available for human, non-human primate, and mouse in this context. However, these resources are limited for the canine. In this study, we present a cost-effective protocol for analysis of canine TCR beta chain genes. Workflow can be accomplished in 1-2 days starting with total RNA and resulting in libraries ready for sequencing on Illumina platforms.


Assuntos
Receptores de Antígenos de Linfócitos T alfa-beta , Linfócitos T , Cães , Animais , Camundongos , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Sequenciamento de Nucleotídeos em Larga Escala/veterinária
11.
J Exp Med ; 221(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38189780

RESUMO

The dynamic folding of genomes regulates numerous biological processes, including antigen receptor (AgR) gene assembly. We show that, unlike other AgR loci, homotypic chromatin interactions and bidirectional chromosome looping both contribute to structuring Tcrb for efficient long-range V(D)J recombination. Inactivation of the CTCF binding element (CBE) or promoter at the most 5'Vß segment (Trbv1) impaired loop extrusion originating locally and extending to DßJß CBEs at the opposite end of Tcrb. Promoter or CBE mutation nearly eliminated Trbv1 contacts and decreased RAG endonuclease-mediated Trbv1 recombination. Importantly, Trbv1 rearrangement can proceed independent of substrate orientation, ruling out scanning by DßJß-bound RAG as the sole mechanism of Vß recombination, distinguishing it from Igh. Our data indicate that CBE-dependent generation of loops cooperates with promoter-mediated activation of chromatin to juxtapose Vß and DßJß segments for recombination through diffusion-based synapsis. Thus, the mechanisms that fold a genomic region can influence molecular processes occurring in that space, which may include recombination, repair, and transcriptional programming.


Assuntos
Cromatina , Receptores de Antígenos , Cromatina/genética , Endonucleases , Mutação , Regiões Promotoras Genéticas/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética
12.
Cell Mol Gastroenterol Hepatol ; 17(1): 119-130, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37714427

RESUMO

BACKGROUND & AIMS: Inflammatory bowel disease (IBD) causes a marked increase in the number of T cells in the intestinal mucosa. Debate exists about whether these excess cells arise from local clonal proliferation or recruitment from the periphery. METHODS: CD8+ T cells were sorted from colon biopsy specimens and blood for T-cell receptor (TCR) ß-chain sequencing. Biopsy specimens from inflamed or uninflamed colon from ulcerative colitis or Crohn's disease cohorts were compared with colon biopsy specimens from people without IBD, as well as with autologous blood α4ß7+, α4ß7- effector/memory, terminal effector/memory CD45RA+ T cell, and mucosal-associated invariant T-cell CD8 subpopulations. RESULTS: CD8 TCR diversity in mucosa and blood did not correlate with inflammation. Repertoire overlap between any 2 distinct locations of a given person's colon was consistently high, although often lower between inflamed and uninflamed sites. CD8 TCR repertoires overlapped between the colon and each peripheral blood subpopulation studied, with the highest overlap seen for integrin α4ß7+ T cells. Inflamed tissue consistently overlapped more than uninflamed tissue with each blood subpopulation. CONCLUSIONS: CD8 T-cell clones are spread homogenously throughout the length of the colon. Although TCR repertoire overlap is greater within than between inflamed and uninflamed colon segments, a similar TCR diversity in both argues against local clonal expansion being the main source of excess cytotoxic T cells in inflamed mucosa. Rather, the increased TCR overlap observed between blood and inflamed mucosa supports the significance of T-cell trafficking in IBD pathogenesis, particularly concerning α4ß7+ T-cell populations.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Doenças Inflamatórias Intestinais/patologia , Doença de Crohn/patologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética
13.
Nat Immunol ; 25(1): 166-177, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38057617

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hybrid immunity is more protective than vaccination or previous infection alone. To investigate the kinetics of spike-reactive T (TS) cells from SARS-CoV-2 infection through messenger RNA vaccination in persons with hybrid immunity, we identified the T cell receptor (TCR) sequences of thousands of index TS cells and tracked their frequency in bulk TCRß repertoires sampled longitudinally from the peripheral blood of persons who had recovered from coronavirus disease 2019 (COVID-19). Vaccinations led to large expansions in memory TS cell clonotypes, most of which were CD8+ T cells, while also eliciting diverse TS cell clonotypes not observed before vaccination. TCR sequence similarity clustering identified public CD8+ and CD4+ TCR motifs associated with spike (S) specificity. Synthesis of longitudinal bulk ex vivo single-chain TCRß repertoires and paired-chain TCRÉ‘ß sequences from droplet sequencing of TS cells provides a roadmap for the rapid assessment of T cell responses to vaccines and emerging pathogens.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , Linfócitos T CD8-Positivos , Vacinação , RNA Mensageiro/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Anticorpos Antivirais
14.
Clin Exp Immunol ; 215(1): 79-93, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-37586415

RESUMO

Crohn's disease (CD) is a chronic immune-mediated disorder of the gastrointestinal tract. Extensive screening studies have revealed the accumulation of immune cell subsets with unique plasticity and immunoregulatory properties in patients with CD. We performed phenotypic and functional studies on inflamed and non-inflamed bioptic tissue to investigate the presence of distinct T cells in the intestinal mucosa of CD patients. We analysed hundreds of surface molecules expressed on cells isolated from the intestinal tissue of CD patients using anti-CD45 mAbs-based barcoding. A gene ontology enrichment analysis showed that proteins that regulate the activation of T cells were the most enriched group. We, therefore, designed T-cell focused multicolour flow-cytometry panels and performed clustering analysis which revealed an accumulation of activated TEM CD4+CD39+ T cells producing IL-17 and IL-21 and increased frequency of terminally differentiated TCR Vδ1+ cells producing TNF-α and IFN-γ in inflamed tissue of CD patients. The different functional capacities of CD4+ and TCR Vδ1+ cells in CD lesions indicate their non-overlapping contribution to inflammation. The abnormally high number of terminally differentiated TCR Vδ1+ cells suggests that they are continuously activated in inflamed tissue, making them a potential target for novel therapies.


Assuntos
Doença de Crohn , Humanos , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Proteínas de Membrana , Inflamação , Linfócitos T
15.
Blood Adv ; 8(7): 1820-1833, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38096800

RESUMO

ABSTRACT: Recombination-activating genes (RAG1 and RAG2) are critical for lymphoid cell development and function by initiating the variable (V), diversity (D), and joining (J) (V(D)J)-recombination process to generate polyclonal lymphocytes with broad antigen specificity. The clinical manifestations of defective RAG1/2 genes range from immune dysregulation to severe combined immunodeficiencies (SCIDs), causing life-threatening infections and death early in life without hematopoietic cell transplantation (HCT). Despite improvements, haploidentical HCT without myeloablative conditioning carries a high risk of graft failure and incomplete immune reconstitution. The RAG complex is only expressed during the G0-G1 phase of the cell cycle in the early stages of T- and B-cell development, underscoring that a direct gene correction might capture the precise temporal expression of the endogenous gene. Here, we report a feasibility study using the CRISPR/Cas9-based "universal gene-correction" approach for the RAG2 locus in human hematopoietic stem/progenitor cells (HSPCs) from healthy donors and RAG2-SCID patient. V(D)J-recombinase activity was restored after gene correction of RAG2-SCID-derived HSPCs, resulting in the development of T-cell receptor (TCR) αß and γδ CD3+ cells and single-positive CD4+ and CD8+ lymphocytes. TCR repertoire analysis indicated a normal distribution of CDR3 length and preserved usage of the distal TRAV genes. We confirmed the in vivo rescue of B-cell development with normal immunoglobulin M surface expression and a significant decrease in CD56bright natural killer cells. Together, we provide specificity, toxicity, and efficacy data supporting the development of a gene-correction therapy to benefit RAG2-deficient patients.


Assuntos
Proteínas de Homeodomínio , Imunodeficiência Combinada Severa , Humanos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Nucleares , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , VDJ Recombinases
16.
Br J Haematol ; 204(3): 910-920, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38098188

RESUMO

Flow cytometry (FC) incorporating the T-cell receptor ß constant chain-1 (TRBC1) has been recently proposed as a new standard in T-cell clonality assessment. While early studies demonstrated high sensitivity in samples with conspicuous tumour burden, performance in real-world samples, including those with low tumour burden and correlation with molecular methods has been limited. We evaluated TRBC1-FC performance and correlated the results with high-throughput TRB sequencing and a targeted next-generation sequencing gene panel. Our cohort consisted of 90 evaluable samples from 57 patients. TRBC1-FC confirmed T-cell clonality in 37 out of 38 samples (97%) that were involved in a mature T-cell neoplasm (MTCN). T-cell clonality was also identified in nine samples from patients lacking a current or prior diagnosis of MTCN, consistent with the emerging entity T-cell clonality of uncertain significance. TRBC-FC was polyclonal in all samples and negative for disease involvement by standard pathology assessment. However, correlation with TRB sequencing in 17 of these samples identified two cases that harboured the known clonal sequence from index testing, indicating the presence of measurable residual disease not otherwise detected. Our study provides real-world correlative validation of TRBC1-FC, highlighting the strengths and limitations pertinent to its increasing implementation by general diagnostic laboratories.


Assuntos
Linfoma , Linfócitos T , Humanos , Linfócitos T/patologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Citometria de Fluxo/métodos , Receptores de Antígenos de Linfócitos T , Linfoma/patologia
17.
Pediatr Infect Dis J ; 43(4): e125-e127, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38134372

RESUMO

The specific expansion of T-cell receptor ß chain variable region (TCR-Vß21.3 + ) CD4 + and CD8 + T cells was observed in Japanese patients with multisystem inflammatory syndrome in children. In contrast, these findings were not observed in patients with toxic shock syndrome and Kawasaki disease. T-cell receptor ß chain variable region repertoire analysis to detect specific expansion of Vß21.3 + T cells might be useful for differentiating multisystem inflammatory syndrome in children from toxic shock syndrome and Kawasaki disease.


Assuntos
COVID-19/complicações , Síndrome de Linfonodos Mucocutâneos , Choque Séptico , Síndrome de Resposta Inflamatória Sistêmica , Criança , Humanos , Síndrome de Linfonodos Mucocutâneos/diagnóstico , Choque Séptico/diagnóstico , Japão , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/análise , Linfócitos T CD8-Positivos , Linfócitos T CD4-Positivos
18.
J Immunol ; 212(4): 534-540, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38117277

RESUMO

In jawed vertebrates, adaptive immunity depends on the process of V(D)J recombination creating vast numbers of T and B lymphocytes that each expresses unique Ag receptors of uniform specificity. The asynchronous initiation of V-to-(D)J rearrangement between alleles and the resulting protein from one allele signaling feedback inhibition of V recombination on the other allele ensures homogeneous receptor specificity of individual cells. Upon productive Vß-to-DßJß rearrangements in noncycling double-negative thymocytes, TCRß protein signals induction of the cyclin D3 protein to accelerate cell cycle entry, thereby driving proliferative expansion of developing αß T cells. Through undetermined mechanisms, the inactivation of cyclin D3 in mice causes an increased frequency of αß T cells that express TCRß proteins from both alleles, producing lymphocytes of heterogeneous specificities. To determine how cyclin D3 enforces monogenic TCRß expression, we used our mouse lines with enhanced rearrangement of specific Vß segments due to replacement of their poor-quality recombination signal sequence (RSS) DNA elements with a better RSS. We show that cyclin D3 inactivation in these mice elevates the frequencies of αß T cells that display proteins from RSS-augmented Vß segments on both alleles. By assaying mature αß T cells, we find that cyclin D3 deficiency increases the levels of Vß rearrangements that occur within developing thymocytes. Our data demonstrate that a component of the cell cycle machinery mediates TCRß protein-signaled feedback inhibition in thymocytes to achieve monogenic TCRß expression and resulting uniform specificity of individual αß T cells.


Assuntos
Receptores de Antígenos de Linfócitos T alfa-beta , Timócitos , Animais , Camundongos , Alelos , Ciclina D3/genética , Retroalimentação , Rearranjo Gênico da Cadeia beta dos Receptores de Antígenos dos Linfócitos T , Linfócitos , Receptores de Antígenos de Linfócitos T alfa-beta/genética
19.
BMC Ophthalmol ; 23(1): 491, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38044453

RESUMO

BACKGROUND: Idiopathic orbital inflammation (IOI) is a nonspecific orbital inflammatory disease with the third highest prevalence among orbital diseases, and its pathogenesis is associated with T-cell-mediated immune responses. This study aimed to investigate the differences in T-cell receptor (TCR) expression between IOI patients and healthy subjects by high-throughput sequencing and to characterize TCR expression in patients with IOI and with respect to glucocorticoid response. METHODS: A total of 19 subjects were enrolled in this study and were divided into the idiopathic orbital inflammation group (IOI group, n = 13) and the healthy control group (HC group, n = 6), and within the IOI group were further divided into the glucocorticoid therapy sensitive group (IOI(EF) group, n = 6) and the glucocorticoid therapy ineffective group (IOI(IN) group, n = 7) based on the degree of effectiveness to glucocorticoid therapy. High-throughput TCR sequencing was performed on peripheral blood mononuclear cells of IOI patients and healthy control individuals using 5' RACE technology combined with Unique Identifier (UID) digital tag correction technology. The TCR CDR3 region diversity, sharing patterns, and differential sequences between the IOI and HC groups, and between the IOI(EF) and IOI(IN) groups were analyzed. RESULTS: It was found that the diversity of TCR CDR3 in the IOI group was significantly lower than that in the HC group, and the frequency of V gene use was significantly different between groups. The diversity of TCR CDR3 in patients in the IOI(EF) group was significantly lower than that in patients in the IOI(IN) group, and the frequency of V and J gene use was significantly different between the IOI(EF) group and the IOI(IN) group. Additionally, we found 133 nucleotide sequences shared in all IOI samples and screened two sequences with higher expression from them. CONCLUSIONS: Our results suggested that abnormal clonal expansion of specific T-cells exists in IOI patients and that TCR diversity may had an impact on the prognosis of glucocorticoid-treated IOI. This study may contribute to a better understanding of the immune status of IOI and provide new insights for T-cell -associated IOI pathogenesis, diagnosis and treatment prediction.


Assuntos
Leucócitos Mononucleares , Receptores de Antígenos de Linfócitos T alfa-beta , Humanos , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Glucocorticoides/uso terapêutico , Receptores de Antígenos de Linfócitos T/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Inflamação
20.
Sci Adv ; 9(49): eadj6174, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38055824

RESUMO

Clonotypic αß T cell responses to cargoes presented by major histocompatibility complex (MHC), MR1, or CD1 proteins underpin adaptive immunity. Those responses are mostly mediated by complementarity-determining region 3 motifs created by quasi-random T cell receptor (TCR) gene rearrangements, with diversity being highest for TCRγδ. Nonetheless, TCRγδ also displays nonclonotypic innate responsiveness following engagement of germline-encoded Vγ-specific residues by butyrophilin (BTN) or BTN-like (BTNL) proteins that uniquely mediate γδ T cell subset selection. We now report that nonclonotypic TCR engagement likewise induces distinct phenotypes in TCRαß+ cells. Specifically, antibodies to germline-encoded human TCRVß motifs consistently activated naïve or memory T cells toward core states distinct from those induced by anti-CD3 or superantigens and from others commonly reported. Those states combined selective proliferation and effector function with activation-induced inhibitory receptors and memory differentiation. Thus, nonclonotypic TCRVß targeting broadens our perspectives on human T cell response modes and might offer ways to induce clinically beneficial phenotypes in defined T cell subsets.


Assuntos
Receptores de Antígenos de Linfócitos T alfa-beta , Receptores de Antígenos de Linfócitos T gama-delta , Humanos , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Subpopulações de Linfócitos T , Butirofilinas/genética , Butirofilinas/metabolismo , Fenótipo , Imunoterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...